Na(+) current contribution to the diastolic depolarization in newborn rabbit SA node cells.
نویسندگان
چکیده
Isolated newborn, but not adult, rabbit sinoatrial node (SAN) cells exhibit spontaneous activity that (unlike adult) are highly sensitive to the Na(+) current (I(Na)) blocker TTX. To investigate this TTX action on automaticity, cells were voltage clamped with ramp depolarizations mimicking the pacemaker phase of spontaneous cells (-60 to -20 mV, 35 mV/s). Ramps elicited a TTX-sensitive current in newborn (peak density 0.89 +/- 0.14 pA/pF, n = 24) but not adult (n = 5) cells. When depolarizing ramps were preceded by steplike depolarizations to mimic action potentials, ramp current decreased 54.6 +/- 8.0% (n = 3) but was not abolished. Additional experiments demonstrated that ramp current amplitude depended on the slope of the ramp and that TTX did not alter steady-state holding current at pacemaker potentials. This excluded a steady-state Na(+) window component and suggested a kinetic basis, which was investigated by measuring TTX-sensitive I(Na) during long step depolarizations. I(Na) exhibited a slow but complete inactivation time course at pacemaker voltages (tau = 33.9 +/- 3.9 ms at -50 mV), consistent with the rate-dependent ramp data. The data indicate that owing to slow inactivation of I(Na) at diastolic potentials, a small TTX-sensitive current flows during the diastolic depolarization in neonatal pacemaker myocytes.
منابع مشابه
Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells.
Several time- and voltage-dependent ionic currents have been identified in cardiac pacemaker cells, including Na(+) current, L- and T-type Ca(2+) currents, hyperpolarization-activated cation current, and various types of delayed rectifier K(+) currents. Mathematical models have demonstrated that spontaneous action potentials can be reconstructed by incorporating these currents, but relative con...
متن کاملL-type but not T-type calcium current changes during postnatal development in rabbit sinoatrial node.
Although the neonatal sinus node beats at a faster rate than the adult, when a sodium current (I(Na)) present in the newborn is blocked, the spontaneous rate is slower in neonatal myocytes than in adult myocytes. This suggests a possible functional substitution of I(Na) by another current during development. We used ruptured [T-type calcium current (I(Ca,T))] and perforated [L-type calcium curr...
متن کاملEffects of Acetylcholine and Noradrenalin on Action Potentials of Isolated Rabbit Sinoatrial and Atrial Myocytes
The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS ...
متن کاملContribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families.
One variant of the long-QT syndrome (LQT3) is caused by mutations in the human cardiac sodium channel gene. In addition to the characteristic QT prolongation, LQT3 carriers regularly present with bradycardia and sinus pauses. Therefore, we studied the effect of the 1795insD Na+ channel mutation on sinoatrial (SA) pacemaking. The 1795insD channel was previously characterized by the presence of a...
متن کاملMirko Baruscotti , Dario DiFrancesco and Richard B . Robinson depolarization in newborn rabbit SA node cells current contribution to the diastolic +
[PDF] [Full Text] [Abstract] , September 1, 2001; 281 (3): H1252-1259. Am J Physiol Heart Circ Physiol L. Protas, D. DiFrancesco and R. B. Robinson sinoatrial node L-type but not T-type calcium current changes during postnatal development in rabbit [PDF] [Full Text] [Abstract] , April 18, 2002; 0 (2002): 82121299-99999. PNAS Grace C. Saumarez, A. E. O. Trezise, C. L.-H. Huang, J. I. Vandenb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 279 5 شماره
صفحات -
تاریخ انتشار 2000